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. Questions:

What is Hierarchical Ansatz?

What are various regimes in Gravitational clustering?

How much can be learned analytically from Euler-Poissson Equation?

How do we treat non-linearity?

How do we describe non-Gaussianity?

What do we learn from Numerical simulations?

Has non-Gaussianity been measured from galaxy Surveys?

Are there any analytical somutions to Vlassov-Poisson’s Equation?
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. How do we describe Clustering?

Statistical Description using the Correlation Functions

Gravity is non-linear which introduces non-Gaussianity

Multi-point Correlation Functions to describe non-Gaussianity.

Multi-point Correlation Functions in k-space or Multispectrum (Fry 1984).

All orders: Probability Distribution Function, PDF.

Geometrical Descriptors: Shape statistics of over(under)dense regions.
Topological Descriptors: Genus, Minkowski Functionals.
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Gravitational Dynamics

△xΦ = 4πGa2ρ0δ; (1a)

δ̇ +
1

a
∇x. ((1 + δ)u) = 0; (1b)

(au)· + (u∇x)u = −∇xΦ (1c)

Eulerian Equations : Reference is fixed
Lagrangian Equations : Reference frame is moving with the fluid element.

Zeldovich Approximation: Linear order Lagrangian Theory

Evolution of phase space density: Vlassov Poisson Collisonless Dynamics.

Evolution of Higher order Correlation functions from BBGKY hierarchy

Numerical Simulations: PM, P3M, Tree, Adaptive and Hybrid approaches.

Simplified Dynamics or Approximations.
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Perturbative regime

δ(R, t) = δ(R, t)(1) + δ(R, t)(2) + δ(R, t)(3) (1)

θ(R, t) = θ(R, t)(1) + θ(R, t)(2) + θ(R, t)(3) (2)

Here δ(R, t)(2) ∝ (δ(R, t)(1))2 and δ(R, t)(3) ∝ (δ(R, t)(1))3

Borrows results from Field Theory.
Assume the perturbations are small for the series to converge

Analysis is done mostly in Fourier domain

〈δ̃(k1, τ )δ̃(k2, τ )δ̃(k3, τ )〉c = δD(k1 + k2 + k3) B(k1,k2, τ ), (3)



Q̃ ≡
B(k1,k2, τ )

P (k1, τ )P (k2, τ ) + P (k2, τ )P (k3, τ ) + P (k3, τ )P (k1, τ )
, (4)

→ variance at a particular length scale is small
All qunatities are smoothed expanded in powers of variance at a given scale.
All qunatities are smoothed and expansion is in powers of variance at a given scale.

Ensemble average of various statistics are computed at different order.

Lowest order diagrams are called Tree-diagrams

Higher order contributions are called loops .
The simplest objects that can be computed are called cumulants.

They are normalised one-point moments SN = 〈δN〉/〈δ2〉N−1.

At the next level Cpq = 〈δp
1δ

2
2〉/〈δ

2〉p+q−1 are also well studied objects.

The results are derived using a specific form for the window. Tophat window provides
simpler results

The SN parameters can be used to reconstruct the pdf in quasi-linear regime
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Here Hn(ν) are the Hermite polynomials

H3(ν) = ν3 − 3ν, (6)

H4(ν) = ν4 − 6 ν2 + 3, (7)

H5(ν) = ν5 − 10 ν3 + 15 ν, (8)

. . .

However a complete reconstruction can be performed at all order if we know the
generating functions.
As opposed to the order by order approach described above.

. .



+<δ(1)δ(2)δ(3)δ(4)> = c

Figure 1: This figure shows two distinct topological diagrams contributing to tree level four point function. The left figure
can be build up from two lower order twopoint diagrams.There are one new diagrams at each order and the hierarchy
can not be closed without making any specific assumptions. The amplitude of the snake(left) diagram is denoted as
Ra = ν2

2 and of the star (right) diagram is denoted as Rb = ν3. Ther will be an explosion of such diagrams at higher
order which are mostly of mixed kind - neither snakes nor stars.

<δ(1)δ(2)> =c + +[ ]
Figure 2: The loop diagrams are explaied in this figure. The tree diagrams are the dominant ones and each loop contributes
a factor of 〈δ(1)〉2. Tree-level and one loop corrections to two-point correlation functions are shown here. All loop
corrections can be computed using PT. However such calculations can produce divergent results for certain spectra.

+ + +<δ(1)δ(2)δ(3)> =c

Figure 3: the tree and loop diagram contributions are depicted here for three point correlation function. The loops start
to dominate as variance increases.



Figure 4: SN parameters are plotted as a function of spectral index n, Only scale free simulations P (k) = Akn are being
considered. The dots with error bars are results from simulations. Results for N = 3, 4, 5 are being shown. Results
correspond to the perturbative regime. Error bars represent scatter among various realisations.
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Non Perturbative Regime: Hierarchical Ansatz - 1
Gravitational clustering do not completely erases memory of initial conditions.

However it approaches a scale free regime at smaller scale.

ξN(λx1, . . . λxn) = λ−(N−1)ξN(x1, . . . ,xN)

There are no characteristic time scale associated with ΩM = 1 Universe.

There are no scales in scale free initial condistions such as P (k) = Akn.

Stability of stable clustering h(n+D)= cosnt?

The correlation hierarchy admits a scale free behaviour.

Mathematical machinary from field-theory can produce meaningful insights.

All multi-point statistics is build from the two-point correlation functions

Connected multipoints gets contributions from all toplogical diagrams snake,and stars

Tree-Level structures remains intact but renormalised vertices



Figure 5: SN parameters are being plotted as a function of variance σ2(R). Low values fof σ2(R) correspond to quasilinear
regime and higher values of σ2(R) correspond to highly non-linear regime. The red lines correspond to prediction from
HEPT in the highly non-linear regime. Initial PS is that of SCDM.



Figure 6: One loop and tree level bispectrum are plotted as a function of smoothing scales. The results are for equilateral
triangular configurations.



Figure 7: The left top panel shows the power spectra as a function of scale for a scale free initial conditions with
n = −1.5. Various symbols depict results from numerical simulations. The reduced bi-spectrum Q for various
triangular configuration is presented here. The triangle for computing the bispectrum has k1/k2 = 2. Q is ploted as a
function of θ the angle between k1 and k2. Solid lines correspond to one-loop results and dashed lines correspond to
tree-level diagrams.



Figure 8: S3 is plotted as a function of Ω
m

. For the solid curve ΩΛ = 0 and for the dashed curve Ω
m

+ ΩΛ = 1.. Initial spectrum in both
case is assumed to be a power law. Upper curves correspond to n = −3 and the bottom one n = −1. The results correspond to a top hat
smoothing.
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Figure 9: One loop and tree-level bi-spectrum is plotted for a equilateral configuration for n = −2. The dashed lines correspond to the tree level
diagrams and the solid lines correspond to one loop corrections. Outputs from various time slices are being plotted from numerical simulations.



Figure 10: Analytical probability disribution functions are plotted as a function of smoothing radius R, initial power spectral index n for scale
free initial conditions. Symbols with error-bars are outputs from numerical simulations.
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Non Perturbative Regime: Hierarchical Ansatz - 2

Vertex Generating Function Gδ(τ ) = ∑

n
νn
n! (−τ )n

Void Probablity Function φ(y) = ∑

N(−y)N SN
N !

Assumptions regarding Gδ(τ ) gives us a specific φ(y) and hence a pdf P (δ).

In perturbative regime Gδ(τ ) can be linked to initial conditions through gravitational
dynamics.
However this is not possible in highly non-linear regime. Nevertheless there are well
motivated ansatze.



Intermediate Regime

No clear Analytical Model
Eulerian PT fails before the Lagarangian PT

There has been recent attempt to extend PT using running spectral slope. This

method is also known as HEPT
Depends on the fact that at highly nonlinear regime all QN tends to become shape

independent and reaches a value which is same as the linear configuration in pertur-
bative regime
It can be used to construct the entire pdf for all possible density contrasts



Galaxy Clustering

Projected Catalogs, e.g. APM, Angular correlation functions.
Tree structures survives the projection effects
Redshift Surveys, 2dF, SDSS
Bias, Mizing of scale, redshift space distortions
Local, non-linear bias can be incorporated δg = b(δ)
Non-Gaussian initial conditions can also be analysed Error estimates include Poisson
noise, Finite volume corrections
All of these can be analysed assuming a hierarchical ansatz
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Figure 11: Analytical predictions of two-point cumulant correlators are plotted as a function
of angular separation θ0. The results are for computations using the projected catalog
APM. These results can be used to check the analytical predictions for Ra and Rb.



Statistics of Collapsed Objects

Assuming a correlation hierarchy for the underlying distribution means
we can also predict the statistics of collapsed objects.

One can use them to study statistics of various cosmological objects. Galaxy For-
mation, Lyman-Alpha clouds, Warm absorbers, tSZ, ksZ and also 21cm observations
.

This combines baryonic inputs with statistics derived from hierarchical ansatz
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Figure 12: Overdense objects reproduces the same underlying hierarchy. However the ver-
tices gets modified
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Figure 13: The new vertices can be reproduced in terms of the old vertices at the generating
function level
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Figure 14: The moments of collapsed objects are however a function of the threshold.


