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Planck Consortium Organizational Structure and the TLA soup

⋆ WG = Working Groups, e.g, PS, NG, Secondaries, Comp. Sep. etc.

⋆ L2/L3 = Level -2/3

⋆ DPC = Data Processing Centre

⋆ LFI = Low Frequency Instrument

⋆ HFI = High Frequency Instrument

⋆ CPAC,LPAC,MPAC = Cambridge/London/Munich Planck Analysis Centre

⋆ DIPAK = Suggestions Wellcome for suitable bacronyms!

All simulations used in this talk are generated by CTP Working Group and the results obtained are for the Power Sepectrum
Estimation Exercise This is a beauty contest for various teams and this exercise will eventually be a part of the larger E2E
tests.

.



Figure 1: “No you cant be the First Author Albert!”.

Sociology vs. Science: Authorship and Data rights



CMBology

⋆ Generation of seed perturbations is Quantum Mechanical

⋆ Constrains Early Universe Models : Inflationary Dynamics - amplitudes, spectral index and the running

Evolution of Perturbations is General Relativistic

⋆ Constrains Geometry and Dynamics of the Universe

Physics is Linear and Clean separation of Early Universe parametrisation and LSS can be achieved

At small scale (high l ) non-linearity is induced by SZ, kSZ, lensing etc.

Focus of this talk is Model testing and NOT Model building



From TOD to Precision Cosmology

⋆ Step-0: Data from the Satelite: missing data, glitches, satellite pointing variation, cooler noise and other systematics

⋆ Step -1: Map Making: Accuracy vs. Speed: To find nearly OPTIMAL but FAST techniques - Destriping vs Generalised
Least Square Techniques

d = As + n (1)

d is time ordered data. s = signal at the pixel where detector is pointing. n = associated noise. 〈n〉 = 0. 〈nnt〉 = N .

Optimal Solution:
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For Planck size data various clever algorithm needs to be employed to tackle the size of the data.

⋆ Step -2: Component Separation : Aim : Frequency Maps to Component Maps, Removal of non-CMB contamination
using Frequency Information, Diffuse Galactic or Extra galactic Point Sources for T as well as Q and U maps - Techniques
include ICA, MaxEnt. Two different appraoch: Foreground Removal vs Component Separation. Difficult for polarisation.



⋆ Step -3: Power Spectrum Estimation : optimal Cls and associated error covariance - Direct Inversion, Likelihood, Hybrid,
Bayesian Sampling. Effective data compression Step.

⋆ Step -4A: Cosmological Parameter Estimation : Translating Cls to Cosmology and associated errorbars - Grid, MCMC,
various sampling techniques

⋆ Step -4B: Cosmological Parameter Estimation : Removing degeneracy in cosmo parameters using External data sets.

⋆ Step -5: Cosmological Parameter Estimation : Removing degeneracy by through use of higher order statistics

Aim is not to lose any Information atleast to keep the various steps as loseless as possible and to add information from
External data sets and the higher order statistics to break degeneracies arising from CMB data alone i.e. -TO REDUCE THE
ERROR-BARS-



Mission Specifications

⋆ Mass - 1800 kg at launch

⋆ Dimensions - 4.2 m high, 4.2 m maximum diameter

⋆ Launcher - Ariane-5 from Guiana Space Centre

⋆ Launch Date - 31st October 2008

⋆ Mission Lifetime - 21 months nominal from end of commission phase

⋆ Wavelength - Microwave: 25 GHz to 1 Thz ( HFI : 83 GHz - 1 THz); ( LFI : 27 - 77 GHz )



Mission Goal

⋆ Determine the Precise Primordial Fluctuation Spectrum

⋆ Test Inflation/Primodial Gravity Waves

⋆ Statistics of the CMB Anisotropies

⋆ Small-scale Anisotropies and Reionization

⋆ Small-Scale Anisotropies and Galaxy Clustering

⋆ Sunyaev-Zel’dovich Effect in Clusters of Galaxies



Bit of Spin and All that Stuff

∆T (n̂) =
∑

lm

[alm] [Ylm(n̂)]; n̂ = (θ, φ) (3)

Q(n̂) − iU(n̂) =
∑

lm

[a2,lm] [2Ylm(n̂)]

Q(n̂) + iU(n̂) =
∑

lm

[a−2,lm] [−2Ylm(n̂)]

Ylm(n̂) are usual spherical harmonics and 2Ylm(n̂) are their spinorial coun-
terparts.

±P (n̂) = Q(n̂) ± iU(n̂) (4)
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Maps, Harmonics alm and Recovery of Power Spectra Cl

Maps in Real Space and Harmonic Domain : Choice of Pixelisation
Schemes

∆T (θi, φi) =
1

4π

lmax
∑

l

Ylm(θ, φ)(aT
lm + aN

lm) (10)

⋆ Decomposition of Strokes parameters Q± iU can be done
interms of the spin harmonics ±2Ylm.

⋆ They are spin-2 objects. In contrast scalers e.g. tempera-
ture anisotropy is a spin-0 object.

⋆ Scalars or spinorial maps are constructed using a particular
pixelisation schemes.

⋆ All pixelisation schemes are mathematically equivalent and
employ different point sets to discritisation of the sphere.

⋆ But some can have distinct advantage on others as regards
to computational speed and efficiency of data retivial.



⋆ Healpix uses hierachical organisation of pixels, Resolution parameter Nside = 2n. Number of pixels Npix = 12Nside2.
lmax = 2 ∗ Nside. Nearly 12 million pixel to cover the surface of the sphere with 3.4 arcmin resolution (Planck resolution

5̃’) correspond to Nside = 1024, lmax = 2048

⋆ Highly optimised and portable library for various utilites exists including fast spherical transforms. http://healpix.jpl.nasa.gov/

⋆ Scalars or spinorial maps are constructed using a particular pixelisation schemes. http://www.mrao.cam.ac.uk/projects/cpac/igloo/,
http://www.glesp.nbi.dk/

⋆ All pixelisation schemes are mathematically equivalent

⋆ But some can have distinct advantage on others as regards to computational speed and efficiency of data retivial.



“To err is human but to really f*** things up you need (super) computers ”- Overheard



Correlation Function and Power Spectra

ξij = 〈∆T (θi, φi)∆T (θj , φj)〉 =
1

4π

∑

l

(2l + 1)Clb
2
l Pl(Cosθij) + σ2

0δij (11)

⋆ Most often the sky coverage is only partial.

⋆ Incomplete sky coverage means ps estimates or Cls are correlated. Binning is done to reduce the

⋆ errors and sometime it is necesarry to deconvolve the estimates.

⋆ Instrumental beam smoothes the maps. Typically its assumed to be a gaussian window function.

⋆ Pixelisation causes further smoothing. However beam smoothing is much coarser than pixelisation effects.

⋆ Pixel scale or the resolution of the maps limits to what lmax CMB spectrum can be recovered.

⋆ Often results are noise dominated much before this is achieved.

⋆ Various Estimates are available in extracting power spectra of CMB maps

⋆ MC based approaches can recover the input Cls by inverting a “Transfer Function”. Essentially taking a inverse problem
approach. No clear technique to compute the associated “error covariance” matrix

⋆ Transfer function encodes beam, cut-sky, noise.

⋆ Likelihood based estimates recover input Cls by maximising the likelihood of obtaining the map for a given set of Cls.

⋆ Likelihood based approaches can provide Fisher Matrix based error estimates



Quadratic Maximum Likelihood Analysis

Likelihood : L(CT
l , CE

l , CB
l , Cx

l |D) ∝
1

det(C)1/2
exp(−D C−1 Dt) (12)

DataVector : D = (T(θi), Q(θj), U(θk)) (13)

CovarianceMatrix : C = 〈DDt〉 =





〈TTt〉 〈TQt〉 〈TU t〉
〈TQt〉 〈QQt〉 〈QU t〉
〈TUt〉 〈UQt〉 〈UU t〉



 (14)

DerivativeMatrix :
dlogL

dC§
l

= DT (C−1)T (∂x
l C)(C−1)D − tr(C−1∂x

l C) (15)

FisherMatrix : [Fxy
ll′ ]

−1
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l δC
y
l′〉; x, y = T, E, B, X (16)

QMLEstimates : δCx
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2
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(17)

For simplified noise model 〈ninj〉 = δijσ
2
pix and all sky coverage

analytical results provide useful guidance.

〈δC2
l 〉 =
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C2
l + Ωpixσ2

pix

)

(18)

⋆ One step Multidimensional Newton -Raphson root finder

⋆ Effective Loseless Data Compression step D → Cl

⋆ Brute Force technique can reach Nside = 32

⋆ Provides Clean Separation of Electric and Magnetic com-
ponents from Q and U maps

⋆ Inversion of C−1 can be done using Conjugate Gradient
Technique

⋆ Trace calculations can be done using Monte-Carlo Calcu-
lations

⋆ Can be replaced by more efficient Exact likelihood sam-
pling by Gibbs Sampling algorithms
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⋆ High Resolution Noise Covariance Matrix (diagonal) when
degraded generates off-diagoal terms.

⋆ A large number of MC maps from Springtide/Madam are
needed to achieve the level of required accuracy.



Pseudo Cl Analysis

⋆ The measured convolved C̃l can be espressed as a linear combination
of input fiducial Cl.

⋆ The estimator Ĉl therefore is unbiased for realistic noise model and
for arbitrary sky coverage

C̃l =
1

2l + 1

l
∑

m=−l

alma∗
lm (19)

ĈT
l =

[

MTT
ll′
]−1

C̃T
l

Ĉe
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⋆ Very fast but non-optimal

⋆ Analytical estimates for variance is only possible for the
case of Temperature

⋆ Analytical estimates for variance for Polarisation is only
possible for noise dominated regime

⋆ Various weighting schemes can reduce the variance or the
scatter associated with the estimator

⋆ A weighting scheme can often reduce the variance associ-
ated with estimation

⋆ Equal Weights per pixels are near optimal in low l regime

⋆ At high l the inverse variance per pixels is typically used
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Hivon E. et. al., ApJ (567) 2, 2002
PolSpice, Xfaster, Xspect, Romaster, Madspec etc.
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Comparison of Scatter in QML and PCL estimators
.



ΣT (l1, l2, W̃l3) =
∑

l3

(2l3 + 1)

4π
W̃l3

(

l1 l2 l3
0 0 0

)

(21)

Wl3 is the window function and encodes information about sky-coverage, noise and depends on scanning strategy.

〈∆C̃T
l ∆C̃T

l′ 〉 = 2CT
l CT

l′ ΣT (l, l′,W
(2)
l ) + ΣT (l, l′,W TT

l ) + 4(CT
l CT

l′ )
1/2ΣT (l, l′,W

(2)T
l3

) (22)

⋆ The window W
(2)
l corresponds to finite sky coverage and is simply the power spectrum of the mask (apodised/unapodised).

It plays a dominant role at small l

⋆ The window W TT
l corresponds to the noise distribution over the sky. Its dominant at high l

⋆ The window W 2T
l corresponds to the cross between noise and partial sky coverage: Its always subdominant but not

negligible.

⋆ The deconvolution of the covariance matrix can be done using the matrices M.

⋆ Similar results can be obtained for E, B, X

⋆ At high -l can be roughly approximated by an fsky approximation

⋆ The approximations are more accurate for T than for E and B or X.



⋆ The approximations effectively treats E and B as spin-0 field.

⋆ More accurate treatment involves correction terms that depend gradients of spin-2 field and are computationally demand-
ing.

⋆ However as Planck is noise mostly dominated for E and B the results are very good approximations.

⋆ The noise is assumed to be white and presence of large correlated component can lead to break down of analytical
approximations.

⋆ With effective destriping the results are in very good agreement with MC results.

〈δĈlδĈl′〉 = M−1
ll′′ 〈δC̃l′′δC̃l′′′〉M

−1,t
l′′′l (23)
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Equal and Inverse variance Weights: Construction of Hybrid Estimator

Motivations for a hybrid Estimator C
hy
l :

⋆ PCL estimators with Equal weight per-pixels Cleq are near optimum for Signal dominated regime (low l).

⋆ The PCL estimators with Inverse weight Cinv
l per-pixel are near optimum at noise dominated regime (highl).

Computation of a hybrid Estimator

⋆ The PCL estimates with Equal weight per-pixels C
eq
l are computed along with their covariances

⋆ The PCL estimates with Inverse weight Cinv
l are computed next and the covariances.

⋆ The cross-covariances are computed for equal and inverse weights

⋆ Two estimates are combined to minimize the following χ2.

χ2 =
∑

l,l′

∑

α,β

(Ĉα
l − Ĉ

hy
l )Fαβ

ll′ (Ĉβ
l − Ĉ

hy
l ) (24)



A Toy Model
If we assume we only have mode in the sky l.The hybrid covariance of estimated hybrid Cl are given by:

1

σ2
hy

=
1

σ2
eq

+
1

σ2
inv

+
2

σ2
cross

(25)

The estimated Cls are given by:

Clhy

σ2
hy

=
C

eq
l

σ2
eq

+
Cinv

l

σ2
inv

+
C

eq
l

σ2
cross

+
Cinv

l

σ2
cross

(26)

The specific weighting scheme that is typically uses is:

wi =
1

1
Ni

+ ǫ
〈N〉

(27)

For Ni >> 〈N〉 i.e. for signal dominated regime we get wi =< N > and for Ni << 〈N〉 we have wi = Ni.

Efstathiou G., Mon.Not.Roy.Astron.Soc. 349 (2004) 603
Efstathiou G., Mon.Not.Roy.Astron.Soc. 370 (2006) 343
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CTP - Planck Working Group Tests

⋆ Pase1a All Sky , No-noise Simulations.

⋆ Phase1b: Galactic cuts and Point source masks. Noise is diagonal and uncorrelated and in-pixel noise covariance matrix
is very close to diagonal. MC simulations can be carried out by using Gaussian and Uncorrelated noise-approximations.

⋆ Phase2-symmetric beam : The noise is no-longer uncorrelated. In addition to the Gaussian noise there is a correlated
component.

⋆ Phase2-assymetric beam: Beam Assymmetry is introduced. Phase2 maps are generated using realistic map-making
algorithm GLS or Destriping techniques.

⋆ Phase-3: Full focal plane simulations which incorporates all detector assemblies of all channels so the errors from Compo-
nent Separations are also taken in to account. Most realistic simulations till date.
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Likelihood Results for Phase1b: Red is full-sky, Black is result from PCl simulation with Wishart distribution with pcls
-covariances
see http://cosmologist.info/cosmomc/CMBLike.html for more details



Finally : Likelihood and Cosmology with CMB

Exact likelihood

lnP (Ĉ|C) =
∑

l

−
(2l + 1)

2

(

ln

(

Cl

Ĉl

)

+
Cl

Ĉl

)

(28)

lnP (Ĉ|C) =
∑

l

−
(2l − 1)

2
lnĈl −

(2l − 1)

2

(

ln

(

Cl

Ĉl

)

+
Cl

Ĉl

)

(29)

Approximate likelihood
Usual suspects: Simplest Approximation is Gaussian! It is known to be biased (Bond Jaffe Knox)

Gaussian : ln PGauss(Ĉ|C) ∝ exp
[

−
1

2
(Ĉ − C)T

S(Ĉ − C)
]

(30)

Next Step is Lognormal! It is biased but in the opposite sense to the Gaussian Approx.

OffsetLognormal : ln POffset−lognormal(Ĉ|C) ∝ Exp

[

−
1

2
(ẑ − z)T

M(ẑ − z)
]

(31)

A weighted sum of Gaussian and Lognormal likelihood used by WMAP team.

WMAP : ln PWMAP (Ĉ|C) =
1

3
lnPGauss(Ĉ|C) +

2

3
lnPLN (Ĉ|C) (32)

More complicated models exist including the Hybrid extension to Likelihood, Equal Variance Likelihood and Xfaster approx-
imations to Likelihood. inc also include simpler models such as Inverse Gamma approximation.



Figure 2: Two Parameter Estimation Exercise from Phase2 simulations: Figure Courtesy: Eric Hivon, Planc Working Group (CTP).



Figure 3: Two Parameter Estimation Exercise from Phase2 simulations: Spice vs Hybrid



Cross - Correlating with External data sets : Life beyond PS estimation

Philosophy: Cross-Correalting two data sets can often provide insights which no individual data can.

Caution : Cross-Correlating World atlas with WMAP sky gives nonzero cross-correlation.

Cross correlation using the QML Estimator
Assuming statistical isotropy for both Φα and Φβ data vectors,
We can express the individual covariances and the cross-covariance in terms of the respective power spectra.

Φ = (Φα(θi),Φ
β(θj)) (33)

C = Φ
T
Φ =

(

〈ΦαΦα〉 〈ΦαΦβ〉
〈ΦβΦα〉 〈ΦβΦβ〉

)

(34)



F δδ′

ℓℓ′ = 〈
∂2L

∂Cα
ℓ ∂Cβ

ℓ′

〉; δ, δ′ ∈ α, β, χ (35)

The Fisher matrix denoted here by F is the expectation value of the curvature matrix.

Cross correlation using the PCL Estimator
Similarly the covariance of Cx

l for cross- power-spectrum in pcl estimation can be expressed as:

〈δCℓ
xδCℓ′

x〉 =
∑

L

{

(Cℓ
a)(Cℓ

b)
1

2L + 1

∑

M

|(w)a
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LM |2 + (Cℓ
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1
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∑
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LM |2 (36)
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∑
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1
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(

L ℓ ℓ′

0 0 0

)2

, (37)
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Non-Gaussianities and other Non-Elephants

⋆ Work in Progress

⋆ Low Priority task at the Moment. Work is in progress to incorporate realistic noise and mask for already existing Estimators

⋆ Non-Gaussian sky simulations are now complete

⋆ Effect of Lensing and recovery of Lensed cls is being attempted



“ Theory without Practice is Bullsh*t ” -Unknown
“ Practice without theory is cow-dung ” -Famous Politician

“In theory there is no difference between theory and practice
But, in practice, there is.” - Jan L. A. van de Snepscheut


